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Damped bistable system driven by colored noise: A digital simulation study
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~Received 13 March 1998!

We present digital computer simulation results of stochastic differential equations associated with a damped
bistable potential. The mean first passage time~MFPT! and the stationary probability density function~SPDF!
for the case of a damped bistable potential with white and colored noise are computed. For the white-noise-
driven bistable potential, we compute the MFPT and compare it with that of earlier theoretical results. For the
colored-noise-driven bistable potential, we compute the SPDF, which compares favorably with already avail-
able analog simulation results. We also compute the MFPT for the colored-noise case. Our simulation results
are expected to act as a benchmark for comparing future theoretical results of damped stochastic system driven
by colored noise.@S1063-651X~98!03209-7#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

Kramers’s problem is a long-standing problem in the a
of stochastic modeling of dynamical systems. Kramer
problem is concerned with the computation of the escape
of a Brownian particle from a metastable state subject t
noise and with a finite damping. The problem was stated
solved under certain restricted conditions by Kramers@1#.
The phenomenon of noise activated escape from a m
stable state plays a central role in many areas of phys
chemistry, and biology. In condensed-matter physics, Kra
ers’s problem is encountered in a variety of phenomena ra
ing from superionic conduction@2#, diffusion of atoms at
crystal surfaces@3#, Josephson junction theory@4#, and a
phase-locked loop device@4# to a driven Ge photoconducto
@5#. The ring-laser gyroscope@6#, dye laser@7,8#, optical
logic, and optical computing devices@9# are examples of
Kramers’s problem in optical physics. Another interesti
variety of Kramers’s problem is the transport phenomenon
complex systems as it occurs in glasses@10,11# and proteins
@12,13#. For a recent review on Kramers’s problem, see Re
@14,15#.

Noise activated escape occurs via two mechanis
namely, thermal@16# and quantum@17# activation. In both
these classical and quantum regimes, Kramers’s problem
been a subject of active research.

In the classical limit, the Langevin equation@4,18# de-
scribing the Brownian motion of a particle of unit mass in
one-dimensional potentialU(x) is

ẍ52g ẋ2
dU~x!

dx
1j~ t !, ~1!

where x is the position of the Brownian particle,g is the
damping coefficient, andj(t) is the noise driving the system
In Eq. ~1! overdots represent derivatives with respect to tim

For the widely discussed case of the bistable poten
U(x) takes the form
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. ~2!

Henceforth we takeU(x) to be a bistable potential. The sys
tem described by Eq.~1! can be made two dimensional:

ẋ5v, ~3a!

v̇5x2x32gv1j~ t !, ~3b!

wherev is the velocity of the Brownian particle. Supposin
that j(t) is Gaussian white noise, we have@19#

^j~ t !j~s!&52Dd~ t2s!,

whereD is the noise strength,d(t) is the Dirac delta func-
tion, and angular brackets represent ensemble averag
This is the case of a white-noise-driven damped bistable
tential. Considerable progress has been made in this
@14,15,20–25#.

When the noisej(t) is colored, in particular, ifj(t) is an
Ornstein-Uhlenbeck~OU! process~i.e., exponentially corre-
lated! as defined by

^j~ t !j~s!&5
D

t
exp~2ut2su/t!,

Eq. ~3! becomes a three-dimensional Markovian process
takes the form

ẋ5v, ~4a!

v̇5x2x32gv1j~ t !, ~4b!

j̇52~1/t!j1
1

t
h~ t !, ~4c!

wheret is the noise correlation time andh(t) is the Gauss-
ian white noise of strengthD. Equation~4! is the general
case of a damped bistable potential driven by colored no
Because of the lack of a detailed balance symmetry, the n
linear three-dimensional Markovian process given by Eq.~4!
cannot be solved in an exact analytical way@4#.
4141 © 1998 The American Physical Society
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By invoking the limitg→`, v can be adiabatically elimi-
nated and one gets the case of an overdamped bistable
tential driven by colored noise. The governing equations
then be written as

ẋ5x2x31j~ t !, ~5a!

j̇52~1/t!j1
1

t
h~ t !, ~5b!

whereh(t) is the Gaussian white noise.
Recently, there has been considerable progress in sol

Eq. ~5! @26# ~see Refs.@35, 36#!. However, the problem stil
remains to be solved for the general case of an arbit
damping coefficient along with a noise of finite correlati
time @i.e., Eq.~4!#. No satisfactory theory is currently avai
able for the problem of a damped stochastic system dri
by colored noise. In such a condition, analog@27# and digital
simulations are the only viable ways of getting a first-ha
clue to the statistical properties of processes described by
~4!. In this paper, we present digital simulation results o
stochastic system with finite damping driven by white a
colored noise.

The paper is organized as follows. In Sec. II we disc
the digital simulation procedure. In Sec. III we present
simulation results for the mean first passage time~MFPT! of
a Brownian particle in a damped bistable potential driven
white noise. Our MFPT results are compared with analyti
results of earlier theories@1,15# and the matrix continued
fraction ~MCF! results@21#. Section IV is devoted to digita
simulation studies@computation of the stationary probabilit
density function ~SPDF! and the MFPT# of the damped
bistable potential driven by colored noise. The SPDF is co
puted and compared with the corresponding results of an
simulation@28#. Next we present the results for the MFP
We then compare our MFPT results with that of anad hoc
formula @which is formulated by us and is supposed to
valid for computing the MFPT for the case of Eq.~4!#. Sec-
tion V contains our conclusions.

II. DIGITAL SIMULATION PROCEDURE

Several algorithms have been proposed recently to i
grate stochastic differential equations@29–31#. Our simula-
tion is based on the second-order algorithm proposed by
in Ref. @31#. The algorithm presented by Fox@31# is genu-
inely second order for both the deterministic and stocha
portions. An improved but complex algorithm has been p
posed by Milshtein and Tret’yakov@32#. We have adapted
Fox’s algorithm and applied it to integrate our multidime
sional stochastic differential equations~3! and~4!. The Box-
Muller algorithm @33# has been used to generate Gauss
white noise needed in our simulation.

We want to compare our simulation results with theor
ical prediction of Kramers@1# and Mel’nikov and Meshkov
@15,20#. These theories demand thatDU@kBT, whereDU
denotes the height of the potential barrier, which is1

4 in our
case,kB is the Boltzmann constant, andT is the absolute
temperature of the surrounding heat bath. In our simulat
we have keptDU/kBT52.5. This relation is equivalent to
fixing D/g50.1 ~sinceD5gkBT), whereD is the strength
po-
n

ng

ry

n

d
q.

s
e

y
l

-
og

e-

ox

ic
-

n

-

n,

of the white noise andg is the damping coefficient. Forg
50, the value ofD cannot be chosen to satisfy the abo
relationship. Therefore, in our simulation, to obtainTbot with
g50, we have chosen a small value ofD ~0.001!. We have
used a small integration step size~the value being less tha
or equal to 0.01! to achieve better convergence. However
has been noticed that increasing the step size even to
order of 0.1 does not create any remarkable deviation in
results. This establishes the superiority of the second-o
algorithm over first-order ones. In our simulation procedu
using colored noise, we have kepth/t!1 in order to ensure
the stability of the algorithm. Hereh is the integration step
size.

For both white and colored noise, we have computed
MFPT for the Brownian particle in the bistable potenti
starting from the bottom of one well (x521) to reach the
bottom of the other well (x511). This time is called the
Tbot. Tbot has been calculated by averaging the first pass
times~FPTs! over 3000 iterations for each choice of param
eter value. The averaging keeps the statistical error in
simulation results below65%.

The SPDF is computed as follows. First, the MFPT
computed using the above-mentioned procedure. Thex axis
ranging from24 to 14 is divided into small intervalsDx of
size 0.025. Starting from an arbitrary value ofx, we follow
the stochastic trajectory ofx by simulating Eq.~3! @or Eq.~4!
as the case may be# for a time interval of 5000–15 000 time
the MFPT. ForD50.32, we have taken 5000 times th
MFPT and for D51.0 we have taken 15 000 times th
MFPT. A counter is maintained for each intervalDx and is
initially set to 0 before the simulation is started. Thex tra-
jectory is followed by recomputingx for every integration
step size. The respective counter is incremented whenevx
falls within the given interval. Finally, we normalize th
counts to get the SPDF.

III. DAMPED BISTABLE SYSTEM DRIVEN
BY WHITE NOISE

In this section we present the results forTbot obtained by
simulating the damped bistable potential driven by wh
noise@Eq. ~3!#. Our results forTbot for various values ofg
are shown in Fig. 1. In Fig. 1 we also compare our results
Tbot with the inverse of escape rate proposed by Kramers@1#,

FIG. 1. Tbot as a function ofg for the damped bistable potentia
driven by white noise withDU/kBT52.5.
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Mel’nikov and Meshkov@15,20#, and Risken and Voigt-
lander@21#. Regarding Kramers’s result, we have used bo
formulas proposed by Kramers, namely, the formula va
for the underdamped case and the formula valid for the mo
erate to strong friction case.

It is observed from the results plotted in Fig. 1 that wit
increasingg, Tbot undergoes a turnover from an inverse tren
(Tbot}1/g) to a linear behavior (Tbot}g). This was noted by
Kramers @1# and subsequently supported by other resu
@15,20,21#. The MFPT in our simulation has a finite value fo
g50 for finite noise strengthD and approaches infinity as
g→`. The MFPT has a minimal value intermediate betwee
these two limits.

Our digital simulation results agree with the MCF resul
of Risken and Voigtlander better than the theoretical resu
in the whole damping range. On comparing the two theor
ical predictions in the underdamped region (g/vb,1, where
vb is the frequency of oscillations at the barrier top!,
Mel’nikov’s results are found to be in better agreement wi
our simulation results than Kramers’s results. However,
the overdamped region (g/vb.1), Mel’nikov’s results co-
incide with Kramers’s result and both theories underestima
our Tbot.

IV. DAMPED BISTABLE SYSTEM DRIVEN
BY COLORED NOISE

A. SPDF

We compare the SPDF obtained through our digital sim
lation with that of the analog simulation carried out b
Fronzoni et al. @28#. Fronzoni et al. have done an analog
simulation of the damped bistable oscillator driven by co
ored noise and have reported the values forR ~the ratio of the
maximum to the minimum in the SPDF curve! for different
values ofD, g, andt. We have performed digital simulation
and have computed the SPDF for the same sets ofD, g, and
t as used by Fronzoniet al. In Table I we compare the values
of R obtained through our digital simulation with those o
Fronzoniet al. @28#. We observe a fairly good coincidence o
the values ofR obtained through digital simulation with
those of analog simulation.

In Figs. 2 and 3 values of the SPDFP(x) calculated by

FIG. 2. SPDF for the damped bistable potential driven by O
noise for varioust with D50.32 andg51.0.
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our digital simulation are plotted againstx for various values
of D, g, andt. The behavior of the SPDF with a change inD,
g, and t is in qualitative agreement with the conclusio
drawn from the analog simulation@28#. It is observed that
with increasingt at fixed D and g, the spreading of the
distribution is reduced and the distribution becomes m
peaked.

In Fig. 4 values of the SPDFP(x) are plotted againstx
for various values ofg with fixed D and t. It is seen again
that the spreading of the distribution is reduced and the
tribution becomes more peaked with increasingg. Thus it is
observed that a change ofg affects the SPDF curve in a wa
qualitatively similar to a change oft.

B. MFPT

In Fig. 5 we plotTbot vs t for various values ofg with
D50.5. Similarly to the widely discussed overdamped ca
the MFPT varies exponentially witht for all values of
damping coefficient.

In Fig. 6 we plotTbot vs g for various values oft in the
moderate to strong friction limit. In Fig. 7 we plotTbot vs g
for various values oft for the weak damping case. We kee
D at 0.5 throughout our simulation reported in Figs. 6 and
It is observed from these plots thatTbot increases exponen
tially with an increase ing. Therefore, we conclude that a
increase int or an increase ing has qualitatively the same
effect onTbot.

FIG. 3. SPDF for the damped bistable potential driven by O
noise for varioust with D51.0 andg51.0.

TABLE I. Comparison of digital and analog simulation resu
for R ~the ratio of the maximum to the minimum of the SPD
curve! for different values ofD ~noise strength!, g ~damping coef-
ficient!, andt ~noise correlation time!.

D g t
R by our

digital simulation
R by

analog simulation@28#

0.32 1.0 0.63 3.66 3.20
0.32 1.0 1.17 6.72 6.80
0.32 1.0 2.14 16.22 19.00
1.0 1.0 1.00 2.41 2.90
1.0 1.0 0.50 1.70 1.93
1.0 1.0 0.10 1.33 1.44
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Notice from Figs. 6 and 7~also see Fig. 5! that we do not
observe any turnover in the value ofTbot on changingg from
the underdamped to the overdamped limit. This has b
observed in the entire range oft explored by us: t
50.05– 5~indeed, we have even gone up tot50.01). How-
ever, the turnover behavior of the MFPT for the white no
case is very well established~see Fig. 1!. It is perplexing
why the MFPT changes its behavior from the white-no
case to the colored-noise case~even for low values of corre
lation time!.

We are unable to compare our simulation results w
those of any theoretical results as no theoretical formula
rently exists~to our knowledge! to calculate the MFPT of a
damped bistable potential driven by colored noise. On
other hand, much theoretical work has been done for
underdamped white-noise case and the overdamped colo
noise case. In order to evaluate the validity of the theo
proposed in the above-mentioned cases for damped stoc
tic system driven by colored noise, we formulate anad hoc
theoretical expression as follows. To arrive at an appro
mate formula valid for small correlation time and we
damping, we just plug the prefactor term present in the f
mula for the MFPT proposed by Hanggi, Marchesoni, a
Grigolini @26# for the overdamped colored-noise case in
the formula for the MFPT proposed by Mel’nikov and Mes
kov @15,20# for the damped white-noise case. Thead hoc
formula reads

FIG. 4. SPDF for the damped bistable potential driven by O
noise for variousg with D50.5 andt51.0.

FIG. 5. Tbot as a function oft for the damped bistable potentia
driven by OU noise withD50.5 for variousg.
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Tbot5

2p expS DU

kBTDAFg~s11s2!

T GF112t

12t G1/2

V1F S 11
g2

4v2D 1/2

2
g

2vGAS gs1

T DAFgs2

T G , ~6!

whereV1 , v, A(gs1 /T), A(gs2 /T), and A@g(s11s2)/T#
are explained in Eq.~2.72! of Ref. @15#. By this procedure,
we hopefully account for the effects of the color of the no
as well as the damping term on the MFPT in a single f
mula. In Fig. 8 we compare our simulation results with t
results calculated by thisad hocformula. It is observed from
Fig. 8 that our simulation results and the results calculated
the ad hocformula do not agree satisfactorily. In fact, for
weak damping, thead hocformula overestimates our simu
lation results, whereas for a large damping coefficient, thead
hoc formula underestimates our simulation results.

V. CONCLUSIONS

This paper has concentrated on digital simulation o
damped bistable potential driven by white as well as O
noise. For the white-noise case, we have compared our d
tal simulation results for the MFPT with those of earli
theories and MCF results. It is found that theoretical a
MCF results underestimateTbot in the moderate to strongg
region. We have also measured the SPDF for the dam

FIG. 6. Tbot vs g for the damped bistable potential driven by O
noise withD50.5 for varioust in the moderate to strong friction
limit.

FIG. 7. Tbot vs g for the damped bistable potential driven by O
noise withD50.5 for varioust in the weak damping limit.
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bistable system driven by OU noise using digital simulat
and found it to agree with the corresponding analog simu
tion results closely.

We have computed the MFPT of a damped bistable

FIG. 8. Tbot vs t for the damped bistable potential driven by O
noise for variousg. The results of thead hocformula ~6! are com-
pared with our simulation. Lines represent our simulation res
with D50.04 andg50.4 ~—!, D50.3 andg52.0 ~–•–•!, andD
50.15 andg51.0 ~----!. Symbols represent the results of thead
hoc formula withD50.04 andg50.4 ~1!, D50.3 andg52.0 ~* !,
andD50.15 andg51.0 ~3!.
.
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d

e
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s.

y
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tential driven by OU noise. We found that an increase int as
well as an increase ing has qualitatively the same effect o
the MFPT. In the absence of a theoretical formula to co
pare our simulation results with, we use anad hoc formula
combining the formula for the MFPT proposed for the ove
damped colored noise case by Hanggi, Marchesoni,
Grigolini @26# with the formula proposed for the MFPT fo
the damped white noise case by Mel’nikov and Meshk
@15,20#. However, thisad hocformula fails to represent the
behavior ofTbot vs t in the whole damping range.

Currently we are attempting to develop the theory o
damped colored-noise-driven nonlinear stochastic system
ing the path integral technique@34#. The path integral
method has proved to be a good technique for calculating
MFPT and the SPDF in the case of an overdamped bist
potential driven by OU noise@35,36#. We expect our simu-
lation results to act as a benchmark for comparing fut
theories on a damped colored-noise-driven nonlinear
chastic system.

ACKNOWLEDGMENT

We thank Professor M. Gopal, Department of Electric
Engineering, IIT Delhi, for his continuous help and encou
agement.

s

s,

,
gy

,

.

an-
@1# H. A. Kramers, Physica~Utrecht! 7, 284 ~1940!.
@2# W. Dieterich, P. Fulde, and I. Peschel, Adv. Phys.29, 527

~1980!.
@3# R. Ferrando, R. Spadacini, and G. E. Tommei, Phys. Rev

45, 444 ~1992!.
@4# H. Risken,The Fokker-Planck Equation—Methods of Soluti

and Applications~Springer-Verlag, Berlin, 1984!.
@5# E. G. Gwinn and R. M. Westervelt, Phys. Rev. Lett.54, 1613

~1985!, and references therein; S. W. Teitsworth and R.
Westervelt,ibid. 56, 516 ~1986!.

@6# W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. San
ers, W. Schleich, and M. O. Scully, Rev. Mod. Phys.57, 61
~1985!, and references therein.

@7# R. Graham, M. Hohnerbach, and A. Schenzle, Phys. Rev. L
48, 1396~1982!; F. T. Arecchi, R. Meucci, G. Puccioni, and
Tredicce,ibid. 49, 1217~1982!.

@8# N. B. Abraham, L. A. Lugiato, and L. M. Narducci, Phy
Today39 ~1!, S53~1986!.

@9# Y. M. Golubev and M. I. Kolobov, Phys. Rev. Lett.79, 399
~1997!.

@10# K. Binder and A. P. Young, Rev. Mod. Phys.58, 801 ~1986!.
@11# J. Wong and C. A. Angell,Glass: Structure by Spectroscop

~Dekker, New York, 1976!.
@12# H. Frauenfelder and P. G. Wolynes, Science229, 337 ~1985!.
@13# D. L. Stein, Proc. Natl. Acad. Sci. USA82, 3670~1985!.
@14# P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.62,

251 ~1990!, and references therein.
@15# V. I. Mel’nikov, Phys. Rep.209, 71 ~1991!, and references

therein.
@16# S. Arrhenius, Z. Phys. Chem.~Leipzig! 4, 226 ~1989!.
@17# G. Gamov, Z. Phys.52, 510 ~1928!.
B

.

-

tt.

@18# C. W. Gardiner,Handbook of Stochastic Methods for Physic
Chemistry and the Natural Sciences~Springer-Verlag, Berlin,
1983!.

@19# W. Horsthemke and R. Lefever,Noise-Induced Transitions
Theory and Applications in Physics, Chemistry, and Biolo
~Springer-Verlag, Berlin, 1984!.

@20# V. I. Mel’nikov and S. V. Meshkov, J. Chem. Phys.85, 1018
~1986!.

@21# H. Risken and K. Voigtlander, J. Stat. Phys.41, 825~1985!; K.
Voigtlander and H. Risken, Chem. Phys.105, 506 ~1984!.

@22# M. Buttiker, P. Harris, and R. Landauer, Phys. Rev. B28, 1268
~1983!.

@23# B. Carmeli and A. Nitzan, Phys. Rev. A29, 1481~1984!.
@24# M. I. Dykman, R. Mannella, P. V. E. McClintock, F. Moss

and S. M. Soskin, Phys. Rev. A37, 1303~1988!.
@25# J. A. M. Janssen, Physica A152, 145 ~1988!, and references

therein.
@26# P. Hanggi, F. Marchesoni, and P. Grigolini, Z. Phys. B56, 333

~1984!; J. M. Sancho, M. San Miguel, S. L. Katz, and J. D
Gunton, Phys. Rev. A26, 1589~1982!; E. Peacock-Lopez, B.
J. West, and Katja Lindenberg,ibid. 37, 3530 ~1988!; P.
Grigolini, in Noise in Nonlinear Dynamical Systems, edited by
F. Moss and P. V. E. McClintock~Cambridge University
Press, Cambridge, 1989!, Vol. I; R. F. Fox, Phys. Rev. A33,
467 ~1986!; G. Tsironis and P. Grigolini,ibid. 38, 3749
~1988!; P. Jung and P. Hanggi,ibid. 35, 4464 ~1987!; M. M.
Klosek-Dygas, B. J. Matkowski, and Z. Schuss,ibid. 38, 2605
~1988!; Th. Leiber, F. Marchesoni, and H. Risken,ibid. 38,
983 ~1988!.

@27# F. Marchesoni, E. Menichella-Saetta, M. Pochini, and S. S



a,

,

4146 PRE 58CHITRALEKHA MAHANTA AND T. G. VENKATESH
tucci, Phys. Rev. A37, 3058 ~1988!; Phys. Lett. A130, 467
~1988!.

@28# L. Fronzoni, P. Grigolini, P. Hanggi, F. Moss, R. Mannell
and P. V. E. McClintock, Phys. Rev. A33, 3320~1986!.

@29# J. R. Klauder and W. P. Peterson, SIAM~Soc. Ind. Appl.
Math.! J. Numer. Anal.22, 1153~1985!.

@30# R. Mannella, inNoise in Nonlinear Dynamical Systems~Ref.
@26#!, Vol. III.

@31# R. F. Fox, Phys. Rev. A43, 2649~1991!.
@32# G. N. Milshtein and M. V. Tret’yakov, J. Stat. Phys.77, 691

~1994!.
@33# D. E. Knuth, The Art of Computer Programming~Addison-

Wesley, Reading, MA, 1969!, Vol. 2.
@34# R. P. Feynman and A. R. Hibbs,Quantum Mechanics and
Path Integrals~McGraw-Hill, New York, 1965!; L. S. Schul-
man,Techniques and Applications of Path Integration~Wiley,
New York, 1981!.

@35# T. G. Venkatesh and L. M. Patnaik, Phys. Rev. E48, 2402
~1993!; Phys. Rev. A46, R7355~1992!; Phys. Rev. E47, 1589
~1993!.

@36# L. Pesquera, M. A. Rodriguez, and E. Santos, Phys. Lett.94A,
287 ~1983!; P. Hanggi, Z. Phys. B75, 275 ~1989!; M. I. Dyk-
man, Phys. Rev. A42, 2020~1990!; Horacio S. Wio, P. Colet,
M. San Miguel, L. Pesquera, and M. A. Rodriguez,ibid. 40,
7312~1990!; K. M. Rattray and A. J. McKane, J. Phys. A.24,
4375 ~1991!; A. J. McKane, H. C. Luckock, and A. J. Bray
Phys. Rev. A.41, 644 ~1990!.


