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Damped bistable system driven by colored noise: A digital simulation study
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We present digital computer simulation results of stochastic differential equations associated with a damped
bistable potential. The mean first passage t{iMEPT) and the stationary probability density functid@PDF
for the case of a damped bistable potential with white and colored noise are computed. For the white-noise-
driven bistable potential, we compute the MFPT and compare it with that of earlier theoretical results. For the
colored-noise-driven bistable potential, we compute the SPDF, which compares favorably with already avail-
able analog simulation results. We also compute the MFPT for the colored-noise case. Our simulation results
are expected to act as a benchmark for comparing future theoretical results of damped stochastic system driven
by colored noise[S1063-651X98)03209-7

PACS numbds): 05.40:+j

I. INTRODUCTION x2 x4
U(X)Z—?‘Fz. (2)
Kramers’s problem is a long-standing problem in the area

of stochastic modeling of dynamical systems. Kramers'sqenceforth we také&)(x) to be a bistable potential. The sys-

problem is concerned with the computation of the escape rat@m described by Eq1) can be made two dimensional:
of a Brownian particle from a metastable state subject to a

noise and with a finite damping. The problem was stated and X=v, (39
solved under certain restricted conditions by Kramlerk _
The phenomenon of noise activated escape from a meta- v=X—X3—yv+ (1), (3b

stable state plays a central role in many areas of physics, ) ) _ _ )
chemistry, and biology. In condensed-matter physics, Kramwhereuv is the velocity of the Brownian particle. Supposing
ers’s problem is encountered in a variety of phenomena ranghat £(t) is Gaussian white noise, we haje9]

ing from superionic conductiof2], diffusion of atoms at B

crystal surfaceg3], Josephson junction theoiy], and a (é()é(s))=2Do(t—s),

phase-locked loop devidd] to a driven Ge photoconductor

[5]. The ring-laser gyroscopks], dye laser[7.8], optical whereD is the noise strengthj(t) is the Dirac delta func-

loai d optical ing devicdd | f tion, and angular brackets represent ensemble averaging.
ogic, and optical computing devicd$] are examples o This is the case of a white-noise-driven damped bistable po-

Kramers’s problem in optical physics. Another intE’resmgtential. Considerable progress has been made in this area
variety of Kramers’s problem is the transport phenomenon irt14 15,20— 25

complex systems as it occurs in glasgg8,11] and proteins

[12,13. For a recent review on Kramers's problem, see REfSOrnstein—UhIenbecl(OU) process(i.e., exponentially corre-

[14,15. :
Noise activated escape occurs via two mechanismsl‘,”lted as defined by

namely, therma[16] and quantuni17] activation. In both D
these classical and quantum regimes, Kramers’s problem has (E(1)&(s))=— exp(—|t—s|/7),
been a subject of active research. T
In the classical limit, the Langevin equati¢d,18] de- ¢ (3) becomes a three-dimensional Markovian process and
scribing the Brownian motion of a particle of unit mass in a5xes the form
one-dimensional potenti&J (x) is

When the nois€(t) is colored, in particular, ig(t) is an

X=v, (49
. du o
X=—yX——g¢ +&(1), (1) v=X—X>—7yv+E&(1), (4b)
- 1
wherex is the position of the Brownian particley is the §=—(Uné+— n(v), (40)

damping coefficient, ané(t) is the noise driving the system.

In Eq. (1) overdots represent derivatives with respect to timewhere 7 is the noise correlation time ang(t) is the Gauss-
For the widely discussed case of the bistable potentialian white noise of strengtlb. Equation(4) is the general
U(x) takes the form case of a damped bistable potential driven by colored noise.

Because of the lack of a detailed balance symmetry, the non-
linear three-dimensional Markovian process given by @j.
*Electronic address: tgvenky@ee.iitd.ernet.in cannot be solved in an exact analytical w4y.
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By invoking the limity—<, v can be adiabatically elimi- 450 T T T T
. N SIMULATION
nated and one gets the case of an overdamped bistable pc 44 | RISKEN =--=- .
tential driven by colored noise. The governing equations can H By ]
then be written as i

x=x—x3+&(t), (5a)

Tbot

. 1
£=—(Ung+ - (), (5b)

where 7(t) is the Gaussian white noise.

Recently, there has been considerable progress in solving
Eq. (5) [26] (see Refs[35, 36)). However, the problem still
remains to be solved for the general case of an arbitrary FIG. 1. T, as a function ofy for the damped bistable potential
damping coefficient along with a noise of finite correlation driven by white noise withAU/kgT=2.5.
time [i.e., Eq.(4)]. No satisfactory theory is currently avail-

able for the problem of a damped stochastic system drivegs the white noise and is the damping coefficient. Foy
by colored noise. In such a condition, anal@d] and digital =0, the value ofD cannot be chosen to satisfy the above
simulations are the only viable ways of getting a ﬁrSt'ha”drelationship. Therefore, in our simulation, to obtdig, with
clue to the statistical properties of processes described by Eg,zQ, we have chosen a small value Df(0.001). We have
(4). In this paper, we present digital simulation results of aseq a small integration step si¢le value being less than
stochastic system with finite damping driven by white andyy equal to 0.01to achieve better convergence. However, it
colored noise. . , has been noticed that increasing the step size even to the
The paper is organized as follows. In Sec. Il we discusgyrger of 0.1 does not create any remarkable deviation in the
the digital simulation procedure. In Sec. Il we present theegyits. This establishes the superiority of the second-order
simulation results for the mean first passage {MEPT) of 4 50rithm over first-order ones. In our simulation procedure
a Brownian particle in a damped bistable potent_|al dnven. byusing colored noise, we have kdptr<1 in order to ensure
white noise. Our MFPT results are compared with analyticalpe stability of the algorithm. Herh is the integration step
results of earlier theoriefl,15] and the matrix continued gj e
fraction (MCF) results[21]. Section IV is devoted to digital For both white and colored noise, we have computed the
simul_ation stu_die@computation of the stationary probability \iepT for the Brownian particle in the bistable potential
density function(SPDF and the MFPT of the damped giarting from the bottom of one welk& —1) to reach the
bistable potential driven by colored noise. The SPDF is comytiom of the other well X=+1). This time is called the
puted and compared with the corresponding results of anal vot- Thot has been calculated by averaging the first passage

simulation[28]. Next we present the re;ults for the MFPT. times (FPT$ over 3000 iterations for each choice of param-
We then compare our MFPT results with that of @hhoC  ger value. The averaging keeps the statistical error in our
formula [which is formulated by us and is supposed to begimulation results belove-5%.

valid for computing the MFPT for the case of Hd)]. Sec- The SPDF is computed as follows. First, the MFPT is
tion V contains our conclusions. computed using the above-mentioned procedure. XTagis
ranging from—4 to +4 is divided into small intervalax of
Il. DIGITAL SIMULATION PROCEDURE size 0.025. Starting from an arbitrary value>gfwe follow

the stochastic trajectory afby simulating Eq(3) [or Eq.(4)

Several algorithms have been proposed recently to inte< the case may béor a time interval of 5000—15 000 times

grate stochastic differential equatiof29—31. Our simula- the MEPT. ForD=0.32 we have taken 5000 times the
tion is based on the second-order algorithm proposed by Fog, -+ and for D = 1'0 \;ve have taken 15000 times the
in Ref. [31]. The algorithm presented by F¢81] is genu- MFPT. A counter is maintained for each intervek and is

inely second order for both the deterministic and stochastifi:nitially set to 0 before the simulation is started. Thera-
portions. An improved but complex algorithm has been pro- ;

. ; X jectory is followed by recomputing for every integration
possad by M"Shte'n and '.rret.yako.[BZ]. We have ad_apted step size. The respective counter is incremented whenever
Fox’s algorithm and applied it to integrate our mUItIdImen'falls within the given interval. Finally, we normalize the
sional stochastic differential equatio(® and(4). The Box- counts to get the SPDF ' '

Muller algorithm [33] has been used to generate Gaussian '
white noise needed in our simulation.

We want to compare our simulation results with theoret- IIl. DAMPED BISTABLE SYSTEM DRIVEN
ical prediction of Kramer$1] and Mel'nikov and Meshkov BY WHITE NOISE
[15,20. These theories demand that)>kgT, whereAU
denotes the height of the potential barrier, which is our In this section we present the results Tigy,; obtained by

case,kg is the Boltzmann constant, and is the absolute simulating the damped bistable potential driven by white
temperature of the surrounding heat bath. In our simulationpoise[Eq. (3)]. Our results forT,, for various values ofy
we have keptAU/kgT=2.5. This relation is equivalent to are shown in Fig. 1. In Fig. 1 we also compare our results for
fixing D/y=0.1 (sinceD = ykgT), whereD is the strength T, With the inverse of escape rate proposed by KrarfiEls
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Mel'nikov and Meshkov[15,20, and Risken and Voigt- TABLE I. Comparison of digital and analog simulation results
lander[21]. Regarding Kramers’s result, we have used botHor R (the ratio of the maximum to the minimum of the SPDF
formulas proposed by Kramers, namely, the formula valigcurve for different values oD (noise strength y (damping coef-
for the underdamped case and the formula valid for the modficiend. andr (noise correlation time
erate to strong friction case.

It is observed from the results plotted in Fig. 1 that with
increasingy, T, Undergoes a turnover from an inverse trend

R by our R by
v T digital simulation analog simulatiorj28]

(Tpor< 1/y) to a linear behavior T y). This was noted by 032 1.0 0.63 3.66 3.20
Kramers[1] and subsequently supported by other results0.32 1.0 1.17 6.72 6.80
[15,20,2]. The MFPT in our simulation has a finite value for 0.32 1.0 2.14 16.22 19.00
v=0 for finite noise strengtiD and approaches infinity as 1.0 1.0 1.00 241 2.90
y—o. The MFPT has a minimal value intermediate between1.0 1.0 0.50 1.70 1.93
these two limits. 1.0 1.0 0.10 1.33 1.44

Our digital simulation results agree with the MCF results
of Risken and Voigtlander better than the theoretical results
in the whole damping range. On comparing the two theoreteur digital simulation are plotted againsfor various values
ical predictions in the underdamped regiopl ¢ ,,<<1, where  of D, y, andr. The behavior of the SPDF with a changebin
wp is the frequency of oscillations at the barrier Yop v, and 7 is in qualitative agreement with the conclusions
Mel'nikov’s results are found to be in better agreement withdrawn from the analog simulatigf28]. It is observed that
our simulation results than Kramers’s results. However, inwith increasingr at fixed D and y, the spreading of the
the overdamped regiony(w,>1), Mel'nikov’s results co- distribution is reduced and the distribution becomes more
incide with Kramers's result and both theories underestimatpeaked.
our Tyet. In Fig. 4 values of the SPDP(x) are plotted against
for various values ofy with fixed D and . It is seen again
that the spreading of the distribution is reduced and the dis-
IV. DAMPED BISTABLE SYSTEM DRIVEN tribution becomes more peaked with increasinghus it is
BY COLORED NOISE observed that a change gfaffects the SPDF curve in a way
qualitatively similar to a change af
A. SPDF
We compare the SPDF obtained through our digital simu-
lation with that of the analog simulation carried out by
Fronzoni et al. [28]. Fronzoniet al. have done an analog
simulation of the damped bistable oscillator driven by col-
ored noise and have reported the valuesR@the ratio of the
maximum to the minimum in the SPDF cupv®r different
values ofD, y, and7. We have performed digital simulation
and have computed the SPDF for the same seB3, of, and
ras used by Fronzomt al.In Table | we compare the values
of R obtained through our digital simulation with those of
Fronzoniet al.[28]. We observe a fairly good coincidence of
the values ofR obtained through digital simulation with
those of analog simulation.
In Figs. 2 and 3 values of the SPON{x) calculated by

B. MFPT

In Fig. 5 we plotTy, vs 7 for various values ofy with
D=0.5. Similarly to the widely discussed overdamped case,
the MFPT varies exponentially withr for all values of
damping coefficient.

In Fig. 6 we plotTy vs y for various values ofrin the
moderate to strong friction limit. In Fig. 7 we pldt,g; vs y
for various values of- for the weak damping case. We keep
D at 0.5 throughout our simulation reported in Figs. 6 and 7.
It is observed from these plots th#f, increases exponen-
tially with an increase iny. Therefore, we conclude that an
increase inr or an increase iny has qualitatively the same
effect onTy;.
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0.012 T
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0.015 - 0.008 -
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0 1
-4 3 0 L
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FIG. 2. SPDF for the damped bistable potential driven by OU  FIG. 3. SPDF for the damped bistable potential driven by OU
noise for variousr with D=0.32 andy=1.0. noise for variousr with D=1.0 andy=1.0.
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FIG. 6. T, vs y for the damped bistable potential driven by OU

FIG. 4. SPDF for the damped bistable potential driven by OUnoise withD=0.5 for variousr in the moderate to strong friction
’y( Sl+ Sz) 1+ 27'

noise for variousy with D=0.5 andr=1.0.

limit.

Notice from Figs. 6 and Talso see Fig. bthat we do not AU
observe any turnover in the value Bf,; on changingy from 2 exp( ﬁ)A T 1=
the underdamped to the overdamped limit. This has been Bz 7 T
observed in the entire range of explored by us: 7 (1+ 7_) _ l}A(’y—Sl)A rS2
=0.05-5(indeed, we have even gone upite 0.01). How- 4? 20 T T
ever, the turnover behavior of the MFPT for the white noise
case is very well establishe@ee Fig. 1 It is perplexing  whereQ,, w, A(ys;/T), A(ys,/T), and Al y(s;+5S,)/T]
why the MFPT changes its behavior from the white-noiseare explained in Eq(2.72 of Ref.[15]. By this procedure,
case to the colored-noise cagwen for low values of corre- we hopefully account for the effects of the color of the noise
lation time). as well as the damping term on the MFPT in a single for-

We are unable to compare our simulation results withmula. In Fig. 8 we compare our simulation results with the
those of any theoretical results as no theoretical formula curresults calculated by thisd hocformula. It is observed from
rently exists(to our knowledggto calculate the MFPT of a Fig. 8 that our simulation results and the results calculated by
damped bistable potential driven by colored noise. On théhe ad hocformula do not agree satisfactorily. In fact, for a
other hand, much theoretical work has been done for th#eak damping, thed hocformula overestimates our simu-
underdamped white-noise case and the overdamped colorel@tion results, whereas for a large damping coefficientathe
noise case. In order to evaluate the validity of the theoriegioc formula underestimates our simulation results.
proposed in the above-mentioned cases for damped stochas-
tic system driven by colored noise, we formulateahhoc
theoretical expression as follows. To arrive at an approxi-
mate formula valid for small correlation time and weak This paper has concentrated on digital simulation of a
damping, we just plug the prefactor term present in the fordamped bistable potential driven by white as well as OU
mula for the MFPT proposed by Hanggi, Marchesoni, andhoise. For the white-noise case, we have compared our digi-
Grigolini [26] for the overdamped colored-noise case intotal simulation results for the MFPT with those of earlier
the formula for the MFPT proposed by Mel’'nikov and Mesh- theories and MCF results. It is found that theoretical and
kov [15,2Q for the damped white-noise case. Tad hoc ~ MCF results underestimafg, in the moderate to strong

1/2

. (6

Thor=
0

V. CONCLUSIONS

formula reads

region. We have also measured the SPDF for the damped

250 13
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FIG. 5. T, as a function ofr for the damped bistable potential

driven by OU noise wittD=0.5 for variousy.
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FIG. 7. Ty vs y for the damped bistable potential driven by OU
noise withD =0.5 for variousr in the weak damping limit.
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100 T T T T T tential driven by OU noise. We found that an increase @s

+ well as an increase iy has qualitatively the same effect on

nr * ] the MFPT. In the absence of a theoretical formula to com-

30 _//' i pare our simulation results with, we use ath hocformula
combining the formula for the MFPT proposed for the over-

TO | e e . damped colored noise case by Hanggi, Marchesoni, and

[ * Grigolini [26] with the formula proposed for the MFPT for

the damped white noise case by Mel'nikov and Meshkov
[15,20. However, thisad hocformula fails to represent the

Tbot

_________ XXX behavior ofT vs 7 in the whole damping range.
10 1 L ! ! 1 Currently we are attempting to develop the theory of a
0.02 0.04 0.06 0.08 0.1 0.12 damped colored-noise-driven nonlinear stochastic system us-

ing the path integral techniqug34]. The path integral
FIG. 8. Ty, vs 7 for the damped bistable potential driven by OU method has proved to _be a good technique for calculatl_ng the
noise for variousy. The results of thed hocformula (6) are com- MFPT_and _the SPDF in th_e case of an overdamped _b'Stable
pared with our simulation. Lines represent our simulation resulif?otential driven by OU noisg35,36. We expect our simu-
with D=0.04 andy=0.4 (—), D=0.3 andy=2.0 (—-—-), andD lation results to act as a benchmark for comparing future
=0.15 andy=1.0 (). Symbols represent the results of the theories on a damped colored-noise-driven nonlinear sto-
hocformula withD =0.04 andy=0.4(+), D=0.3 andy=2.0(x),  Chastic system.
andD=0.15 andy=1.0 (X).
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